3.74 \(\int \frac{1}{\sqrt{2-3 x^2+3 x^4}} \, dx\)

Optimal. Leaf size=90 \[ \frac{\left (\sqrt{6} x^2+2\right ) \sqrt{\frac{3 x^4-3 x^2+2}{\left (\sqrt{6} x^2+2\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\sqrt [4]{\frac{3}{2}} x\right ),\frac{1}{8} \left (4+\sqrt{6}\right )\right )}{2 \sqrt [4]{6} \sqrt{3 x^4-3 x^2+2}} \]

[Out]

((2 + Sqrt[6]*x^2)*Sqrt[(2 - 3*x^2 + 3*x^4)/(2 + Sqrt[6]*x^2)^2]*EllipticF[2*ArcTan[(3/2)^(1/4)*x], (4 + Sqrt[
6])/8])/(2*6^(1/4)*Sqrt[2 - 3*x^2 + 3*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0156303, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.062, Rules used = {1103} \[ \frac{\left (\sqrt{6} x^2+2\right ) \sqrt{\frac{3 x^4-3 x^2+2}{\left (\sqrt{6} x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{\frac{3}{2}} x\right )|\frac{1}{8} \left (4+\sqrt{6}\right )\right )}{2 \sqrt [4]{6} \sqrt{3 x^4-3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[2 - 3*x^2 + 3*x^4],x]

[Out]

((2 + Sqrt[6]*x^2)*Sqrt[(2 - 3*x^2 + 3*x^4)/(2 + Sqrt[6]*x^2)^2]*EllipticF[2*ArcTan[(3/2)^(1/4)*x], (4 + Sqrt[
6])/8])/(2*6^(1/4)*Sqrt[2 - 3*x^2 + 3*x^4])

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{2-3 x^2+3 x^4}} \, dx &=\frac{\left (2+\sqrt{6} x^2\right ) \sqrt{\frac{2-3 x^2+3 x^4}{\left (2+\sqrt{6} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\sqrt [4]{\frac{3}{2}} x\right )|\frac{1}{8} \left (4+\sqrt{6}\right )\right )}{2 \sqrt [4]{6} \sqrt{2-3 x^2+3 x^4}}\\ \end{align*}

Mathematica [C]  time = 0.107259, size = 144, normalized size = 1.6 \[ -\frac{i \sqrt{1-\frac{6 x^2}{3-i \sqrt{15}}} \sqrt{1-\frac{6 x^2}{3+i \sqrt{15}}} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{-\frac{6}{3-i \sqrt{15}}} x\right ),\frac{3-i \sqrt{15}}{3+i \sqrt{15}}\right )}{\sqrt{6} \sqrt{-\frac{1}{3-i \sqrt{15}}} \sqrt{3 x^4-3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[2 - 3*x^2 + 3*x^4],x]

[Out]

((-I)*Sqrt[1 - (6*x^2)/(3 - I*Sqrt[15])]*Sqrt[1 - (6*x^2)/(3 + I*Sqrt[15])]*EllipticF[I*ArcSinh[Sqrt[-6/(3 - I
*Sqrt[15])]*x], (3 - I*Sqrt[15])/(3 + I*Sqrt[15])])/(Sqrt[6]*Sqrt[-(3 - I*Sqrt[15])^(-1)]*Sqrt[2 - 3*x^2 + 3*x
^4])

________________________________________________________________________________________

Maple [C]  time = 0.801, size = 87, normalized size = 1. \begin{align*} 2\,{\frac{\sqrt{1- \left ( 3/4+i/4\sqrt{15} \right ){x}^{2}}\sqrt{1- \left ( 3/4-i/4\sqrt{15} \right ){x}^{2}}{\it EllipticF} \left ( 1/2\,x\sqrt{i\sqrt{15}+3},1/2\,\sqrt{-1-i\sqrt{15}} \right ) }{\sqrt{i\sqrt{15}+3}\sqrt{3\,{x}^{4}-3\,{x}^{2}+2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(3*x^4-3*x^2+2)^(1/2),x)

[Out]

2/(I*15^(1/2)+3)^(1/2)*(1-(3/4+1/4*I*15^(1/2))*x^2)^(1/2)*(1-(3/4-1/4*I*15^(1/2))*x^2)^(1/2)/(3*x^4-3*x^2+2)^(
1/2)*EllipticF(1/2*x*(I*15^(1/2)+3)^(1/2),1/2*(-1-I*15^(1/2))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{3 \, x^{4} - 3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x^4-3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(3*x^4 - 3*x^2 + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\sqrt{3 \, x^{4} - 3 \, x^{2} + 2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x^4-3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(3*x^4 - 3*x^2 + 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{3 x^{4} - 3 x^{2} + 2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x**4-3*x**2+2)**(1/2),x)

[Out]

Integral(1/sqrt(3*x**4 - 3*x**2 + 2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{3 \, x^{4} - 3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(3*x^4-3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(3*x^4 - 3*x^2 + 2), x)